Direct Observation of Hindered t-Butyl Rotation in Neopentyl Bromide and Neopentyl Iodide

By C. HACKETT BUSHWELLER,* STEVEN HOOGASIAN, WARREN G. ANDERSON, and Leo J. LETENDRE (Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609)

Summary The variable temperature ¹H n.m.r. spectra of neopentyl bromide and iodide from -150 to -170 °C show changes in the respective t-butyl resonances consistent with slowing t-butyl rotation on the n.m.r. time scale.

SIMPLE neopentyl derivatives have been important in investigations of organic reaction mechanisms such as $S_{\rm N}2$ processes. Although there have been a number of reports concerning restricted rotation about carbon-carbon single bonds in relatively hindered halogenated methylbutanes,¹ there have been no papers concerning the rate of t-butyl rotation in the simple neopentyl halides.

The ¹H n.m.r. spectrum (60 MHz) at -91 °C of neopentyl iodide (I) (3% solution, v/v, in $CBrF_3$) showed singlet resonances for the methylene (δ 3.15) and t-butyl (1.12) groups. Below -150 °C, the t-butyl resonance broadens and separates at ca. -166 °C into two singlets at δ 1.27 (3H) and 1.05 (6H) consistent with slowing t-butyl rotation on the n.m.r. time scale and the symmetrical environment of a static t-butyl group. The observation of a singlet resonance for each t-butyl Me group of (I) at -166 °C may be rationalized in terms of rapid rotation of individual methyl groups² even at that temperature. The methylene resonance of (I) remains a singlet albeit broadened by increasing viscosity at very low temperatures consistent with the three-fold symmetry of the adjacent t-butyl group. Neopentyl bromide (5% solution in CBrF₃) behaved similarly although the chemical shift difference between the t-butyl methyl resonances at δ 1.17 (3H) and 1.07 (6H) under conditions of slow exchange (-168 °C) is smaller compared to (I). The t-butyl ¹H resonance of neopentyl chloride (3% solution in CBrF_3) showed no separation even at -178 °C. Since bromine is somewhat more effective than chlorine in restricting rotation,¹ the absence of separation for neopentyl chloride could be due to a lower barrier than for the bromine and iodine analogues or to a smaller chemical shift difference between different t-butyl methyl groups.

TABLE		
Activation parameters for t-butyl rotation		
	Bu ^t CH ₂ Br	${\operatorname{Bu}}^{t}{\operatorname{CH}}_{2}{\operatorname{I}}$
ΔH^{\ddagger} (kJ mol ⁻¹)	$25 \cdot 1 \pm 0 \cdot 8$	24.7 ± 0.8
ΔS^{\ddagger} (J K ⁻¹ mol ⁻¹)	0 ± 2	0 ± 2

Activation parameters for t-butyl rotation in neopentyl iodide and bromide were determined by complete n.m.r. line shape analyses at various temperatures using a locally modified version of the DNMR3³ program (see Table). The barriers to t-butyl rotation in the two neopentyl halides are, as expected, lower than those in Bu^tCMe₂Cl (ΔG^{\ddagger} 41·0 kJ mol⁻¹ at -81 °C)¹ and Bu^tCMe₂Br (ΔG^{\ddagger} 45·2 kJ mol⁻¹ at -68 °C).^{1b} The similarity in the barriers to t-butyl rotation in neopentyl bromide and iodide is reminiscent of the preferences for the equatorial conformation in bromocyclohexane (ΔG° -2·00 kJ mol⁻¹ at -80 °C).⁴

We thank the National Science Foundation for financial support. C.H.B. thanks the Alfred P. Sloan Foundation for a Fellowship and the Camille and Henry Dreyfus Foundation for a Teacher-Scholarship.

(Received, 21st November 1974; Com. 1413.)

¹ (a) J. E. Anderson and H. Pearson, J. Chem. Soc. (B), 1971, 1209; Chem. Comm., 1971, 871; (b) B. L. Hawkins, W. Bremser, S. Borcic, and J. D. Roberts, J. Amer. Chem. Soc., 1971, 93, 4472.

⁸ M. Nakamura, M. Oki, and H. Nakanishi, Tetrahedron, 1974, 30, 543, and references therein.

⁸ D. A. Kleier and G. Binsch, J. Magnetic Resonance, 1970, 3, 146. ⁴ F. R. Jensen and C. H. Bushweller, Adv. Alicyclic Chem., 1971, 3, 140; F. R. Jensen, C. H. Bushweller, and B. H. Beck, J. Amer. Chem. Soc., 1969, 91, 344.